Complex Survey Data Analysis With Sas

  • 7% OFF
  • $100.94
  • Regular price $108.14
  • Publish Date: 2016-09-01
  • Binding: Hardcover
  • Author: Taylor H. Lewis

Free shipping

Free Shipping On All Orders(Domestic Only).

Free Returns

Free 30 Days Returns. Returns & Refund Policy

Secure Shopping Guarantee

We use Secure Sockets Layer (SSL) technology to provide you with the safest, most secure shopping experience possible.


Attention: For textbook, access codes and supplements are not guaranteed with used items.



Complex Survey Data Analysis with SAS is an invaluable resource for applied researchers analyzing data generated from a sample design involving any combination of stratification, clustering, unequal weights, or finite population correction factors. After clearly explaining how the presence of these features can invalidate the assumptions underlying most traditional statistical techniques, this book equips readers with the knowledge to confidently account for them during the estimation and inference process by employing the SURVEY family of SAS/STAT procedures.

The book offers comprehensive coverage of the most essential topics, including:

  • Drawing random samples
  • Descriptive statistics for continuous and categorical variables
  • Fitting and interpreting linear and logistic regression models
  • Survival analysis
  • Domain estimation
  • Replication variance estimation methods
  • Weight adjustment and imputation methods for handling missing data

The easy-to-follow examples are drawn from real-world survey data sets spanning multiple disciplines, all of which can be downloaded for free along with syntax files from the authors website: http://mason.gmu.edu/~tlewis18/.

While other books may touch on some of the same issues and nuances of complex survey data analysis, none features SAS exclusively and as exhaustively. Another unique aspect of this book is its abundance of handy workarounds for certain techniques not yet supported as of SAS Version 9.4, such as the ratio estimator for a total and the bootstrap for variance estimation.

Taylor H. Lewis is a PhD graduate of the Joint Program in Survey Methodology at the University of Maryland, College Park, and an adjunct professor in the George Mason University Department of Statistics. An avid SAS user for 15 years, he is a SAS Certified Advanced programmer and a nationally recognized SAS educator who has produced dozens of papers and workshops illustrating how to efficiently and effectively conduct statistical analyses using SAS.

Customer Reviews


MORE FROM THIS COLLECTION

Recently Viewed Items