The Bugs Book: A Practical Introduction To Bayesian Analysis (Chapman & Hall/Crc Texts In Statistical Science)

  • 27% OFF
  • $53.95
  • Regular price $74.27
  • Publish Date: 2012-10-04
  • Binding: Paperback
  • Author: David Lunn;Chris Jackson;Nicky Best;Andrew Thomas;David Spiegelhalter

Free shipping

Free Shipping On All Orders(Domestic Only).

Free Returns

Free 30 Days Returns. Returns & Refund Policy

Secure Shopping Guarantee

We use Secure Sockets Layer (SSL) technology to provide you with the safest, most secure shopping experience possible.


Attention: For textbook, access codes and supplements are not guaranteed with used items.



Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines.

The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributionsall those aspects of the art of modelling that are easily overlooked in more theoretical expositions.

More pragmatic than ideological, the authors systematically work through the large range of tricks that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas.

Full code and data for examples, exercises, and some solutions can be found on the books website.

Customer Reviews


MORE FROM THIS COLLECTION

Recently Viewed Items